Compartmental Models in Epidemiology

NTD Workshop
National Disease Modeling Consortium, IIT Bombay

Mithun Kumar Mitra
mkmitra@iitb.ac.in



»» Gompartmental Models

—
.

Shutterstock



Classes of epidemic models
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Kermack-McKendrick Epidemic Model
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Kermack and McKendrick, 1927



General contact rates

Does the number of contacts per unit time depend on the population size?

Mass action incidence C( N ) — ﬁ N

Standard incidence C( N ) == ﬁ
__BN
1+ AN
Power Law incidence c( N ) — ﬁ N2

Michaelis-Menten incidence  C ( N )



General contact rates

Does the number of contacts per unit time depend on the population size?

Standard incidence C( N ) = /B
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Generalisations of the SIR Model
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Generalisations of the SIR Model




Generalisations of the SIR Model




Vaccination Model

Vaccination against a disease can help in two ways:
e For vaccinated individuals, it can confer a reduced susceptibility to infections
e If a vaccinated individual does become infected, it can reduce their infectivity




Vaccination Model
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Endemic Diseases

SIR models with birth and death
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Vector-Borne Diseases

SIAM J. APPL. MATH. r@ 2006 Society for Industrial and Applied Mathematics
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BIFURCATION ANALYSIS OF A MATHEMATICAL MODEL FOR
MALARIA TRANSMISSION*

NAKUL CHITNIST, J. M. CUSHING#, AND J. M. HYMAN?
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Number of susceptible humans

Number of exposed humans

Number of infectious humans

Number of recovered (immune and asymptomatic, but slightly infectious) humans
Number of susceptible mosquitoes

Number of exposed mosquitoes

Number of infectious mosquitoes

Total human population
Total mosquito population
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Immigration rate of humans. Humans x Time™!.

Per capita birth rate of humans. Time™!.
Per capita birth rate of mosquitoes. Time™!.
Number of times one mosquito would want to bite humans per unit time, if humans were
freely available. This is a function of the mosquito’s gonotrophic cycle (the amount of
time a mosquito requires to produce eggs) and its anthropophilic rate (its preference for
human blood). Time™!.

The maximum number of mosquito bites a human can have per unit time. This is a
function of the human’s exposed surface area. Time~!.

Probability of transmission of infection from an infectious mosquito to a susceptible
human, given that a contact between the two occurs. Dimensionless.

Probability of transmission of infection from an infectious human to a susceptible
mosquito, given that a contact between the two occurs. Dimensionless.

Probability of transmission of infection from a recovered (asymptomatic carrier) human
to a susceptible mosquito, given that a contact between the two occurs. Dimensionless.
Per capita rate of progression of humans from the exposed state to the infectious state.
1/vp is the average duration of the latent period. Time™!.

Per capita rate of progression of mosquitoes from the exposed state to the infectious
state. 1/v, is the average duration of the latent period. Time—!.

Per capita recovery rate for humans from the infectious state to the recovered state. 1/,
is the average duration of the infectious period. Time™!.
Per capita disease-induced death rate for humans. Time™!.
Per capita rate of loss of immunity for humans. 1/pp is the average duration of the
immune period. Time—1.

Density-independent part of the death (and emigration) rate for humans. Time™!.
Density-dependent part of the death (and emigration) rate for humans. Humans™
Time™!.

Density-independent part of the death rate for mosquitoes. Time™!.
Density-dependent part of the death rate for mosquitoes. Mosquitoes—! x Time—!.
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Visceral leishmaniasis (VL) or Kala azar
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Visceral Leishmaniasis in the Indian Subcontinent:
Modelling Epidemiology and Control

Anette Stauch'®, Ram Rup Sarkar?®, Albert Picado?, Bart Ostyn?, Shyam Sundar®, Suman Rijal®, Marleen
Boelaert?, Jean-Claude Dujardin®®, Hans-Peter Duerr'*

1 Department of Medical Biometry, University of Tlbingen, Tubingen, Germany, 2 Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India, 3 Institute of Tropical
Medicine, Antwerp, Belgium, 4 Institute of Medical Sciences, Banaras Hindu University, Varanasi, India, 5 Koirala Institute of Medical Sciences, Dharan, Nepal, 6 Laboratory
for Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium

Abstract

Background: In the Indian subcontinent, about 200 million people are at risk of developing visceral leishmaniasis (VL). In
2005, the governments of India, Nepal and Bangladesh started the first regional VL elimination program with the aim to
reduce the annual incidence to less than 1 per 10,000 by 2015. A mathematical model was developed to support this
elimination program with basic quantifications of transmission, disease and intervention parameters. This model was used
to predict the effects of different intervention strategies.

Methods and Findings: Parameters on the natural history of Leishmania infection were estimated based on a literature
review and expert opinion or drawn from a community intervention trial (the KALANET project). The transmission dynamic
of Leishmania donovani is rather slow, mainly due to its long incubation period and the potentially long persistence of
parasites in infected humans. Cellular immunity as measured by the Leishmanin skin test (LST) lasts on average for roughly
one year, and re-infection occurs in intervals of about two years, with variation not specified. The model suggests that
transmission of L. donovani is predominantly maintained by asymptomatically infected hosts. Only patients with
symptomatic disease were eligible for treatment; thus, in contrast to vector control, the treatment of cases had almost no
effect on the overall intensity of transmission.

Conclusions: Treatment of Kala-azar is necessary on the level of the individual patient but may have little effect on
transmission of parasites. In contrast, vector control or exposure prophylaxis has the potential to efficiently reduce
transmission of parasites. Based on these findings, control of VL should pay more attention to vector-related interventions.
Cases of PKDL may appear after years and may initiate a new outbreak of disease; interventions should therefore be long
enough, combined with an active case detection and include effective treatment.
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Table 4. Parameter combinations of treatment-related interventions.

Scenario

Parameter Default 1 2 3 4 5 6 7 8 9 10
Duration first-line treatment 1/z, (days) 30 1 30 30 30 30 30 30
Duration second-line treatment 1/, (days) 30 1 5 5 30 30 30 30 30 30
Duration PKDL treatment 1/t; (days) 180 1 30 180 180 180 180 180 180 180
Early case detection 1/y, (days) 1 1 1 1 42 90 365 1 1 1
Treatment fatality f; (%) 5 (1] 5 5 5 5 5 0 5 5
Treated fraction leading to retention of KA p; (%) 5 0 5 5 5 5 5 5 [ 5
Treated fraction leading to relapse into PKDL p; (%) < | 0 3 3 3 3 3 3 3 0

Ten different scenarios were considered for sensitivity analyses of the equilibrium solutions to the effects of seven treatment-related intervention parameters.
doi:10.1371/journal.pntd.0001405.t004
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Table 5. Parameter combinations of vector-related interventions.

Scenario
Parameter Default 1 2 3 4 5 6 7 8 9 10
No. of vectors (N} per Ny=100 humans 527 100 527 527 300 527 527 300 300 527
Life expectancy of sand flies 1/, (days) 14 14 7 14 14 11 14 1 14 1
Feeding cycle duration 1/ (days) B 4 B 8 4 - 6 B 6 6

Ten different scenarios were considered for sensitivity analyses of the equilibrium solutions to the effects of three vector-related intervention parameters.
doi:10.1371/journal.pntd.0001405.t005
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Chapter 3

An Introduction to Stochastic
Epidemic Models

Linda J.S. Allen
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