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Outline

 Role played by mathematical models : 

 Some examples from COVID19 pandemic.

 Using empirical data in mathematical models : Examples from 

Malaria Model
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Core modeling opportunities (priority questions)

 Where is the pandemic/epidemic going (baseline)?

 What is driving transmission? 

 What is the potential of existing/expected delivery interventions to reduce transmission and 

accelerate reduction in epidemic?

 What combinations of tools, strategies in real-world implementation will be most cost-

effective at accelerating reduction?
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Role played by mathematical models in shaping 
control policies - COVID19 pandemic
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• Results of epidemiological modelling which has informed policymaking in the UK 
and other countries.

• Assessed the potential role of a number of public health measures –
non-pharmaceutical interventions (NPIs) 

Example 1



Baseline Reproduction number: R0 = 2.4

Figure 1: Unmitigated epidemic scenarios for GB and the US. (A) Projected deaths 

per day per 100,000 population in GB and US. 



Figure 2: Mitigation strategy scenarios for GB showing critical care (ICU) 
bed requirements. 



Research does not get much more policy-relevant than this. When updated data in the 
Imperial team’s model* indicated that the United Kingdom’s health service would soon be 
overwhelmed with severe cases of COVID-19, and might face more than 500,000 deaths if the 
government took no action, Prime Minister Boris Johnson almost immediately announced 
stringent new restrictions on people’s movements. 

*Ferguson, N. M. et al. Preprint at Spiral https://doi.org/10.25561/77482 (2020).

https://doi.org/10.25561/77482


https://www.youtube.com/watch?v=QI28aIql

DrU

Example 2
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Use of empirical data in 
mathematical models : 
Examples from Malaria model
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 Using simple models to generate proxy estimation for a parameter in the 
complex model:
• Discussing field data from Kenya on Mosquito density in presence and 

absence of Biolarvicides
• Estimating parameters from field survey data by plugging into sub-

models (Example from Malaria model)
 Using time series data to estimate transmission parameters via nonlinear 

inverse problem
• Discussing Malaria incidence data from Kokrajhar Assam
• Estimating parameters from complex models (Example from Malaria 

model)
 Using mathematical expressions like R0 and Endemic state to estimate 

parameter



Goal –

• To study the impact of biolarvicides on malaria prevalence.
• Estimate parameter values which were not available or measureable.
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Parameters directly obtained 

from literature and are fixed

(A, d, alpha - 3 parameters)

Census/ demographic/ 

epidemiological data



• This was a controlled study of biolarvicide (specifically 

Bti and Bs) use in highland regions of Kenya that are 

prone to epidemic malarial outbreaks.

• Mosquito populations from trials in the presence, as well 

as in the absence of biolarvicides during an eight week 

period were used to calibrate parameters in the M, B 

subsystem. 
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• Since Kenya data was on per-household basis; the M-B subsystem was 
scaled down : the M equation was factored by 30 (representing 
average number of households in the region). 

• Setting Mh = M/30 and sub-system was calibrated. 
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Parameters 
indirectly estimated 
from entomological 
data and submodel

(7 parameters)



1. Sub-model calibration (M-B system) - mosquito abundance timeseries 

data in the absence of biolarvicides, by setting initial bacteria population 

B0 = 0 and estimated the mosquito growth and death rates: θ and θ0 and 

carrying capacity L. 

2. Fixing the parameters obtained above and calibrating sub-model to 

intervention data (setting B0 to biolarvicide population at the beginning 

of the field study) – estimated values for the bacterial growth rates γ, 

mosquito death rate by biolarvicides θ1, the interaction rate γ1 of bacteria 

and mosquito; and carrying capacity K. 
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Fig. The control data corresponds to mosquito population with no biolarvicide use. The  

intervention data corresponds to malaria population in presence of biolarvicide in Afrane et. 

al. (2016).

Solid and dotted lines are obtained from fitting. Values obtained from fitting are 

(a) Indoor: θ = 2.516, θ0 = 2.416, θ1 = 2.3 × 10-7; 

(b) Outdoor: θ = 0.4751, θ0 = 0.4340, θ1 = 1.31 × 10-7. 

Common parameters values obtained for both indoor and outdoor settings are 

γ1 = .001, γ = 39, L = 160, K = 300, 000. 
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Kokrajhar district of Assam, India, a region that suffers regularly 
from malaria. 

Considered mean District malaria incidence rates (DMIR) for the 
months of August to December (2001 to 2010), during which 
the district experiences a spike in malaria infections for 
calibration. 
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• While calibrating full model system to Kokrajhar data – parameters 
for the M, B system were fixed at values obtained for the outdoor 
region calibration above. 

• Starting with no initial bacteria (in order to account for the lack of 
biolarvicide use), full model was calibrated to estimate transmission 
rates β and λ using averaged malaria incidences over a 10 year 
period from 2001 to 2010 from Kokrajhar. 

• As a final step, using the same malaria incidence data from 
Kokrajhar, model was calibrated with non-zero value for B0 ensuring 
presence of biolarvicide. 
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Fig. Reported values are of total malaria infection. Fitting the full model system to malaria incidence data 
from Kokrajhar district of Assam, India. Values obtained for transmission rates: β = 5.227 × 10-6 and
λ = 4.117 × 10-5. 

The dashed line shows the predicted reduction in malaria incidence – if biolarvicides are used starting 

at initial time. The vertical dotted line captures the reduction in malaria infection at 60 days. 

In absence of Biolarvicides22
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Almost constant PRCC values indicates the particular parameter as having a constant influence on the 
outcome, over the eight week period. The parameters were sampled from a uniform distribution with 
mean of the intervals. Significant parameters with p < 0.001 are marked with ∗. For the mosquito 
population, γ , θ are the two most significant parameters. θ is the most significant parameter for the 
biolarvicide population. The highlighted PRCC values belong to those parameters whose uncertainty 
contributes little to uncertainty of outcomes.

Sensitivity Analysis



Conclusion:

• Comprehending empirical studies is crucial for utilizing data within 
mathematical models.

• Mathematical models, crafted with insights into disease epidemiology 
and informed by field data, have the potential to generate evidence for 
policymaking.



Thank You!
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