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We use modeling and data analytics to address all the 
decision-making stages on the way to eradication
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How will we eliminate 

malaria?
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Lasting
Insecticide-treated
Nets
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Indoor

Residual

Spraying



8 | © 2023 Bill & Melinda Gates Foundation. All rights reserved. 

How will we eliminate 

malaria?
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Good access to healthcare reduces malaria transmission
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Mass Drug Administration
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June 2013: Lake Kariba area had LOTS of malaria

Google Earth/IDM/Edward Wenger
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Munyumbwe rural health center

Google Earth/IDM/Edward Wenger
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Munyumbwe rural health center

Google Earth/IDM/Edward Wenger

Health Facility 
Catchment Area
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Community health workers are

anti-malaria heroes 

Photo: PATH/Laura Newman
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We can simulate malaria in Munyumbwe to 

assess the potential

impact of community health 
workers.
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Improving people’s ability to get healthcare

halved their risk of infection.
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By using a combination of existing tools, 

malaria elimination is within reach 

in many places.
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Let’s talk about

models and data
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Human spatial migration
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Using data to inform importation in the 

Zambian model
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Understanding human movement is essential to 
understanding malaria transmission.

Movement determines how well-mixed a 
spatially distributed population is

Humans carry the parasite longer, and 
sometimes travel much farther than vectors

(Human movement) x (Prevalence) =
Importation 
pressure
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Understanding human movement is essential to 
understanding malaria transmission.

Movement determines how well-mixed a 
spatially distributed population is

Humans carry the parasite longer, and 
sometimes travel much farther than vectors

Despite this importance, the amplitude, 
distribution, seasonality, etc. of human 
movement is typically unknown.

(Human movement) x (Prevalence) =
Importation 
pressure
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We can use an unusually rich dataset to estimate 
human movement patterns.

Up to 10 rounds of MDA/MTAT data over ~5 
years, with attached surveys
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We can use an unusually rich dataset to estimate 
human movement patterns.

PersonID Round (Lat, Lon) Name Age Gender

73FF8BCC-1136-

489B-976F-

902E203D58F4

1 -16.93, 27.59
Owen 

Mweene
2 1

FC16DEAB-62F4-

47B2-BCE5-

ED8FA5286CE8

1 -16.92, 27.58
Abraham

Mutinda
14 1

… … … … … …

Up to 10 rounds of MDA/MTAT data over ~5 
years, with attached surveys

Essentially a population census repeated 
multiple times in quick succession



33 | © 2023 Bill & Melinda Gates Foundation. All rights reserved. 

Identifying unique individuals

PersonID Round (Lat, Lon) Name Age Gender

73FF8BCC-1136-489B-976F-

902E203D58F4
1 -16.93, 27.59 Owen Mweene 2 1

FC16DEAB-62F4-47B2-BCE5-

ED8FA5286CE8
1 -16.92, 27.58 Abraham Mutinda 14 1

B4148EE4-508A-49F8-82F4-

C1F658D1D8F5
1 -16.94, 27.60 Grace Siambata 9 2

… … … … … …

86F2F810-70A0-4197-B42D-

F61C8E9FA635
2 -16.93, 27.58 Syambwata Grace 9 2

D9B40515-41A7-492A-A447-

439D05F1CD32
2 -16.94, 27.60 Elenora M Dobola 3 2

55CC5FFA-1A71-4C93-8AEA-

BB263A91BDCF
2 -16.93, 27.59 Tommy Moonga 35 1

… … … … … …

AFA77A28-D30D-42D0-B653-

F92A11431E7B
3 -16.94, 27.60 Elin Dobola 5 2
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Identifying unique individuals
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PersonID Round (Lat, Lon) Name Age Gender

73FF8BCC-1136-489B-976F-
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Linkage generates a master list of unique individuals

UniqueID Round 1 Round 2 Round 3 … Round 10

B4148EE4-508A-49F8-82F4-

C1F658D1D8F5
Grace Siambata, 2 Syambwata Grace, 2 N/A … N/A

D9B40515-41A7-492A-A447-

439D05F1CD32
N/A Elenora M Dobola, 5 Elin Dobola, 3 … N/A

55CC5FFA-1A71-4C93-8AEA-

BB263A91BDCF
N/A N/A Tommy Moonga, 35 … N/A

73FF8BCC-1136-489B-976F-

902E203D58F4
Owen Mweene, 1 N/A N/A … Oren Mweene, 2

FC16DEAB-62F4-47B2-BCE5-

ED8FA5286CE8

Abraham Mutinda, 

14
N/A N/A … N/A

4EAC21FC-E181-40D7-BD91-

51DF55B11A24
N/A N/A N/A … Felix Chembo, 44

264F9889-D463-43BF-A446-

A0D2D7B31E18
N/A N/A N/A … Janet Nyambe, 2
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Linkage gives a longitudinal picture of how people move

UniqueID Round 1 

Location

Round 2 

Location

Round 3 

Location
…

Round 10 

Location

B4148EE4-508A-49F8-82F4-

C1F658D1D8F5
(-16.93, 27.59) (-16.94, 27.63) N/A … N/A

D9B40515-41A7-492A-A447-

439D05F1CD32
N/A (-16.88, 27.61) (-16.91, 27.40) … N/A

55CC5FFA-1A71-4C93-8AEA-

BB263A91BDCF
N/A N/A (-16.93, 27.59) … N/A

73FF8BCC-1136-489B-976F-

902E203D58F4
(-16.91, 27.40) N/A N/A … (-16.31, 27.08)

FC16DEAB-62F4-47B2-BCE5-

ED8FA5286CE8
(-16.88, 27.61) N/A N/A … N/A

4EAC21FC-E181-40D7-BD91-

51DF55B11A24
N/A N/A N/A … (-16.88, 27.61)

264F9889-D463-43BF-A446-

A0D2D7B31E18
N/A N/A N/A … (-16.83, 27.65)
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Next, we identify population clusters
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Next, we identify population clusters

Home 

cluster 

population

Destination 

cluster 

population

Distance between 

clusters (km)

# of observed 

trips

53 201 2.1 5

15720 585 5.8 58

… … … …
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Finally, we fit a gravity migration model

Home 

cluster 

population

Destination 

cluster 

population

Distance between 

clusters (km)

# of observed 

trips

# of predicted 

trips

53 201 2.1 5 7

1572 585 15.8 72 68

… … … … …

Rate of travel between clusters ∝
𝑝𝑖
0.95𝑝𝑗

0.95

𝑑1.1
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The gravity model fits longitudinal linkage quite well

Rate of travel between clusters ∝
𝑝𝑖
0.95𝑝𝑗

0.95

𝑑1.1
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Helping the health system help

community health workers (CHWs).



45 | © 2023 Bill & Melinda Gates Foundation. All rights reserved. 

Reactive case detection follow-ups per index case
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It’s a power law!
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Closer look with Buleyamalima and Sianyoolo as examples
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At what point do the CHWs stop doing follow-ups because they have too many 
index cases?
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At what point do the CHWs stop doing follow-ups because they have too many 
index cases?
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The demands of reactive case detection depend strongly 
on population density. 
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Meaning of “perfect follow-up” differs by catchment due to the 
population distribution
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Identify categories of RCD quality based on local population distribution
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Identify categories of RCD quality based on local population distribution
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Identify categories of RCD quality based on local population distribution
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Flag CHWs when the lack of RCD is likely due to overload
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