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Meet the IDM Malaria Modeling Team
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We use modeling and data analytics to address all the
decision-making stages on the way to eradication
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How will we eliminate
malaria?
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How will we eliminate
malaria?



Good ACCESS 10 healthcare reduces malaria transmission
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Munyumbwe rural health center
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Munyumbwe rural health center

Health Facility
Catchment Area
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We can SImulate malaria in Munyumbwe to
assess the potential

Impact of community health
workers.
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Improving people’s ability to get healthcare
halved their risk of infection.
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By using a combination of existing tools,

malaria elimination is within reach
In many places.



Let'stalk about
models and data






Human spatial migration

/
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Using data toinform Importationinthe
Zambian model



Understanding human movement is essential to
understanding malaria transmission.
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Humans carry the parasite longer, and
sometimes travel much farther than vectors

Movement determines how well-mixed a
spatially distributed population s

Importation

(Human movement) x (Prevalence) =
pressure
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Understanding human movement is essential to
understanding malaria transmission.

Humans carry the parasite longer, and
sometimes travel much farther than vectors

Movement determines how well-mixed a
spatially distributed population is

Importation

(Human movement) x (Prevalence) =
pressure

Despite this importance, the amplitude,
distribution, seasonality, etc. of human
movement is typically unknown.
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We can use an unusually rich dataset to estimate
human movement patterns.

Up to 10 rounds of MDA/MTAT data over ~5
years, with attached surveys

R o % .
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We can use an unusually rich dataset to estimate
human movement patterns.

Up to 10 rounds of MDA/MTAT data over ~5
years, with attached surveys

Essentially a population census repeated
multiple times in quick succession

PersonlID Round (Lat, Lon) Name Age Gender

73FF8BCC-1136- o

489B-976F- 1 -16.93,27.59 wen 2 1

902E203D58F4 weene

FC16DEAB-62F4- Abrah

47B2-BCES5- 1 16.92, 27.58 raham 14 1
Mutinda

ED8FA5286CE8
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ldentifying unique individuals

PersoniD Round (Lat, Lon)

73FF8BCC-1136-489B-976F-

902E203D58F4 L -16.93,27.59  Owen Mweene 2 1
FC16DEAB-62F4-47B2-BCE5- .

ED8FA5286CES 1 -16.92,27.58 Abraham Mutinda 14 1
B4148EE4-508A-49F8-82F4- .

C1F658D1D8F5 L -16.94,27.60  Grace Siambata 9 2

86F2F810-70A0-4197-B42D-

F61C8E9FA635 2 -16.93,27.58 Syambwata Grace 9 2
D9B40515-41A7-492A-A447-
439D05F1CD32 2 -16.94,27.60 Elenora M Dobola 3 2
55CC5FFA-1A71-4C93-8AEA-
BB263A91BDCF 2 -1693,2759 Tommy Moonga 35 1

AFA77A28-D30D-42D0-B653- .
F92A11431E7B 3 -16.94,27.60 Elin Dobola 5 2
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ldentifying unique individuals

PersoniD Round (Lat, Lon)

B4148EE4-508A-49F8-82F4- ,
C1F658D1D8F5 L -16.94,27.60  Grace Siambata 9 2
86F2F810-70A0-4197-B42D-

F61C8E9FA635 2 -16.93,27.58 Syambwata Grace 9 2
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ldentifying unique individuals

PersoniD Round (Lat, Lon)

D9B40515-41A7-492A-A447-
439D05F1CD32 2 -16.94,27.60 Elenora M Dobola 3 2

AFA77A28-D30D-42D0-B653- .
F92A11431E7B 3 -16.94,27.60 Elin Dobola 5 2

1) O 2075 BT e GaTes-F OO AT TTE TS TESeT Ve S TV S e



Levenshtein A Perfect

F|nd |inkages based on distance between 9¢ gender

) difference
first & last names match
PersoniD Round (Lat, Lon)
73FF8BCC-1136-489B-976F-
902E203D58F4 L -16.93,27.59  Owen Mweene 2 1
FC16DEAB-62F4-47B2-BCE5- .
ED8FA5286CES 1 -16.92,27.58 Abraham Mutinda 14 1

B4148EE4-508A-49F8-82F4- :
C1F658D1D8F5 L -16.94,27.60  Grace Siambata 9 2

86F2F810-70A0-4197-B42D-

F61C8E9FA635 2 -16.93,27.58 Syambwata Grace 9 2
D9B40515-41A7-492A-A447-
439D05F1CD32 2 -16.94,27.60 Elenora M Dobola 3 2
55CC5FFA-1A71-4C93-8AEA-
BB263A91BDCF 2 -16.93,27.59  Tommy Moonga 35 1

AFA77A28-D30D-42D0-B653- .
F92A11431E7B 3 -16.94,27.60 Elin Dobola 5 2
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Linkage generates a master list of unique individuals

UniquelD Round 1 Round 2 Round 3 Round 10
g?;g?ggﬁ;g?? ~49F8-82F4- Grace Siambata, 2 Syambwata Grace, 2 N/A N/A
23993;85215&%1327'492A'A447' N/A Elenora M Dobola, 5  Elin Dobola, 3 N/A
Esgggg,igi;ékgg “C93-BARA- N/A N/A Tommy Moonga, 35 ... N/A
;(3);22%(;3—51;346—4898—976F- Owen Mweene, 1 N/A N/A ... Oren Mweene, 2
Egg?:iléggégE?—MBZ—BCES— Abrahan114Mutinda, N/A N/A N/A
SorsseTinz N/A N/A NA ... FelixChembo, 44
i%ggggzgﬁg_%BF-AMG_ N/A N/A N/A ... Janet Nyambe, 2
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Linkage gives a longitudinal picture of how people move

38

UniquelD Round 1 Round 2 Round 3 Round 10
Location Location Location Location
2‘1‘ lggg%‘g‘gggs’*"‘%&&% (-1693,2759)  (-16.94, 27.63) N/A N/A
535;82;?££7_492A_A447_ N/A (-16.88,27.61) (-16.91, 27.40) N/A
S i O3 BARA N/A N/A (-16.93, 27.59) N/A
;3;33‘;3?81&6'4893'976F' (-16.91, 27.40) N/A N/A (-16.31, 27.08)
Eg;ﬁg&?&gﬁ;“‘””%@s' (-16.88,27.61) N/A N/A N/A
gfg%;;fﬂ;; -40D7-BDI1- N/A N/A N/A (-16.88,27.61)
igé?[??;z; '13;'165’ “43BF-Ad46- N/A N/A N/A (-16.83, 27.65)
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Next, we identify population clusters
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Next, we identify population

40
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clusters

Home Destination Distance between # of observed
cluster cluster clusters (km) trips
population population
53 201 2.1 5
15720 585 58 58




Finally, we fit a gravity migration model

41

Rate of travel between clusters «

0.95,,0.95
b; Dj
d11

Home Destination Distance between # of observed # of predicted
cluster cluster clusters (km) trips trips
population population
53 201 2.1 5 7
1572 585 15.8 72 68
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Latitude

The gravity model fits longitudinal linkage quite well
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Helping the health system help
community health workers (cHws).



Reactive case detection follow-ups per index case
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It’s a power law!
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Closer look with Buleyamalima and Sianyoolo as examples
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At what point do the CHWs stop doing follow-ups because they have too many
index cases?
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At what point do the CHWs stop doing follow-ups because they have too many
index cases?
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At what point do the CHWs stop doing follow-ups because they have too many
index cases?
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The demands of reactive case detection depend strongly
on population density.

sparse households dense households
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Meaning of “perfect follow-up” differs by catchment dueto the
population distribution
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ldentify categories of RCD quality based on local population distribution
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ldentify categories of RCD quality based on local population distribution
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ldentify categories of RCD quality based on local population distribution
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Flag CHWs when the lack of RCD is likely due to overload
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Many thanks to

* MDA study participants
e Zambia NMEC: Busiku Hamainza

*  PATH-MACEPA: John Miller, Kamm Schneider,
Reine Rutagwera, Kafula Silumbe, Rick
Steketee, Javan Chanda, Duncan Earle

* Tulane University: Thom Eisele
* USCF: Adam Bennett

* Past IDMers: Jaline Gerardin, Milen Nikolov
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