

Simulating the Lake Kariba mass drug administration trial to understand what it takes to eliminate malaria

Caitlin Bever, Joshua Suresh, Prashanth Selvaraj, Katherine E Battle, Amelia-Bertozzi-Villa, Monique Ambrose, Daniel Bridenbecker, Svetlana Titova

BILL& MELINDA GATES foundation

Meet the IDM Malaria Modeling Team

Monoclonals

2 I	DM	INSTITUTE FOR DISEASE MODELING
5 I		DISEASE MODELING

We use modeling and data analytics to address all the decision-making stages on the way to eradication

Time

How will we eliminate malaria?

How will we eliminate malaria?

Long-Lasting nsecticide-treated Nets

Indoor Residual

Spraying

How will we eliminate malaria?

Good **access to healthcare** reduces malaria transmission

CHEMBE

MUNYUMBWE HEALTH CENTRE PO BOX 34. GWEMBE.

VISION To provide equity of access to cost effective quality health come as close to the family as possible. Soution Niv/aids is real don't take chances. ADVICE: TE IS CURABLE REF/MOHA

Mass Drug Administration

June 2013: Lake Kariba area had LOTS of malaria

Google Earth/IDM/Edward Wenger

Munyumbwe rural health center

•

Google Earth/IDM/Edward Wenger

Munyumbwe rural health center

Health Facility Catchment Area

Google Earth/IDM/Edward Wenger

Photo: IDM/Milen Nikolov

Photo: IDM/Milen Nikolov

Community health workers are anti-malaria heroes

PATH/Laura Newman

We can **Simulate** malaria in Munyumbwe to assess the potential **impact of community health** workers.

Improving people's ability to get healthcare halved their risk of infection.

By using a combination of existing tools, malaria elimination is within reach in many places. Let's talk about models and data

Using data to inform importation in the Zambian model

Understanding human movement is essential to understanding malaria transmission.

Humans carry the parasite longer, and sometimes travel much farther than vectors

Movement determines how **well-mixed** a spatially distributed population is

(Human movement) x (Prevalence) =

Importation pressure

Understanding human movement is essential to understanding malaria transmission.

Humans carry the parasite longer, and sometimes travel much farther than vectors

Movement determines how **well-mixed** a spatially distributed population is

(Human movement) x (Prevalence) =

Importation pressure

Despite this importance, the amplitude, distribution, seasonality, etc. of human movement is typically unknown.

We can use an unusually rich dataset to estimate human movement patterns.

Up to 10 rounds of MDA/MTAT data over ~5 years, with attached surveys

We can use an unusually rich dataset to estimate human movement patterns.

Up to 10 rounds of MDA/MTAT data over ~5 years, with attached surveys

Essentially a population census repeated multiple times in quick succession

PersonID	Round	(Lat, Lon)	Name	Age	Gender
73FF8BCC-1136- 489B-976F- 902E203D58F4	1	-16.93, 27.59	Owen Mweene	2	1
FC16DEAB-62F4- 47B2-BCE5- ED8FA5286CE8	1	-16.92, 27.58	Abraham Mutinda	14	1
•••	•••	•••	•••	•••	•••

Identifying unique individuals

PersonID	Round	(Lat, Lon)	Name	Age	Gender
73FF8BCC-1136-489B-976F- 902E203D58F4	1	-16.93, 27.59	Owen Mweene	2	1
FC16DEAB-62F4-47B2-BCE5- ED8FA5286CE8	1	-16.92, 27.58	Abraham Mutinda	14	1
B4148EE4-508A-49F8-82F4- C1F658D1D8F5	1	-16.94, 27.60	Grace Siambata	9	2
	•••	•••	•••	•••	
86F2F810-70A0-4197-B42D- F61C8E9FA635	2	-16.93, 27.58	Syambwata Grace	9	2
D9B40515-41A7-492A-A447- 439D05F1CD32	2	-16.94, 27.60	Elenora M Dobola	3	2
55CC5FFA-1A71-4C93-8AEA- BB263A91BDCF	2	-16.93, 27.59	Tommy Moonga	35	1
	•••	•••	•••	•••	
AFA77A28-D30D-42D0-B653- F92A11431E7B	3	-16.94, 27.60	Elin Dobola	5	2

Identifying unique individuals

PersonID	Round	(Lat, Lon)	Name	Age	Gender
73FF8BCC-1136-489B-976F- 902E203D58F4	1	-16.93, 27.59	Owen Mweene	2	1
FC16DEAB-62F4-47B2-BCE5- ED8FA5286CE8	1	-16.92, 27.58	Abraham Mutinda	14	1
B4148EE4-508A-49F8-82F4- C1F658D1D8F5	1	-16.94, 27.60	Grace Siambata	9	2
•••	•••	•••	•••	•••	
86F2F810-70A0-4197-B42D- F61C8E9FA635	2	-16.93, 27.58	Syambwata Grace	9	2
D9B40515-41A7-492A-A447- 439D05F1CD32	2	-16.94, 27.60	Elenora M Dobola	3	2
55CC5FFA-1A71-4C93-8AEA- BB263A91BDCF	2	-16.93, 27.59	Tommy Moonga	35	1
•••	•••	•••	•••	•••	
AFA77A28-D30D-42D0-B653- F92A11431E7B	3	-16.94, 27.60	Elin Dobola	5	2

U 2025 BIL & MEINUA GALES FOUNDATION. AIL FIGHTS RESERVED.

Identifying unique individuals

PersonID	Round	(Lat, Lon)	Name	Age	Gender
73FF8BCC-1136-489B-976F- 902E203D58F4	1	-16.93, 27.59	Owen Mweene	2	1
FC16DEAB-62F4-47B2-BCE5- ED8FA5286CE8	1	-16.92, 27.58	Abraham Mutinda	14	1
B4148EE4-508A-49F8-82F4- C1F658D1D8F5	1	-16.94, 27.60	Grace Siambata	9	2
•••	•••	•••	•••	• • •	•••
86F2F810-70A0-4197-B42D- F61C8E9FA635	2	-16.93, 27.58	Syambwata Grace	9	2
D9B40515-41A7-492A-A447- 439D05F1CD32	2	-16.94, 27.60	Elenora M Dobola	3	2
55CC5FFA-1A71-4C93-8AEA- BB263A91BDCF	2	-16.93, 27.59	Tommy Moonga	35	1
•••	•••	•••	•••	•••	•••
AFA77A28-D30D-42D0-B653- F92A11431E7B	3	-16.94, 27.60	Elin Dobola	5	2

Find linkages based on

Levenshtein distance between first & last names

Perfect gender match

PersonID	Round	(Lat, Lon)	Name	Age	Gender
73FF8BCC-1136-489B-976F- 902E203D58F4	1	-16.93, 27.59	Owen Mweene	2	1
FC16DEAB-62F4-47B2-BCE5- ED8FA5286CE8	1	-16.92, 27.58	Abraham Mutinda	14	1
B4148EE4-508A-49F8-82F4- C1F658D1D8F5	1	-16.94, 27.60	Grace Siambata	9	2
•••	•••	•••	•••	•••	
86F2F810-70A0-4197-B42D- F61C8E9FA635	2	-16.93, 27.58	Syambwata Grace	9	2
D9B40515-41A7-492A-A447- 439D05F1CD32	2	-16.94, 27.60	Elenora M Dobola	3	2
55CC5FFA-1A71-4C93-8AEA- BB263A91BDCF	2	-16.93, 27.59	Tommy Moonga	35	1
	•••	•••	•••	•••	••••
AFA77A28-D30D-42D0-B653- F92A11431E7B	3	-16.94, 27.60	Elin Dobola	5	2

Linkage generates a master list of unique individuals

UniqueID	Round 1	Round 2	Round 3	•••	Round 10
B4148EE4-508A-49F8-82F4- C1F658D1D8F5	Grace Siambata, 2	Syambwata Grace, 2	N/A	•••	N/A
D9B40515-41A7-492A-A447- 439D05F1CD32	N/A	Elenora M Dobola, 5	Elin Dobola, 3	•••	N/A
55CC5FFA-1A71-4C93-8AEA- BB263A91BDCF	N/A	N/A	Tommy Moonga, 35	•••	N/A
73FF8BCC-1136-489B-976F- 902E203D58F4	Owen Mweene, 1	N/A	N/A	•••	Oren Mweene, 2
FC16DEAB-62F4-47B2-BCE5- ED8FA5286CE8	Abraham Mutinda, 14	N/A	N/A	•••	N/A
4EAC21FC-E181-40D7-BD91- 51DF55B11A24	N/A	N/A	N/A	•••	Felix Chembo, 44
264F9889-D463-43BF-A446- A0D2D7B31E18	N/A	N/A	N/A	•••	Janet Nyambe, 2

Linkage gives a longitudinal picture of how people move

UniqueID	Round 1 Location	Round 2 Location	Round 3 Location	•••	Round 10 Location
B4148EE4-508A-49F8-82F4- C1F658D1D8F5	(-16.93, 27.59)	(-16.94, 27.63)	N/A	•••	N/A
D9B40515-41A7-492A-A447- 439D05F1CD32	N/A	(-16.88, 27.61)	(-16.91, 27.40)	•••	N/A
55CC5FFA-1A71-4C93-8AEA- BB263A91BDCF	N/A	N/A	(-16.93, 27.59)	•••	N/A
73FF8BCC-1136-489B-976F- 902E203D58F4	(-16.91, 27.40)	N/A	N/A	•••	(-16.31, 27.08)
FC16DEAB-62F4-47B2-BCE5- ED8FA5286CE8	(-16.88, 27.61)	N/A	N/A	•••	N/A
4EAC21FC-E181-40D7-BD91- 51DF55B11A24	N/A	N/A	N/A	•••	(-16.88, 27.61)
264F9889-D463-43BF-A446- A0D2D7B31E18	N/A	N/A	N/A	•••	(-16.83, 27.65)

Next, we identify population clusters

Next, we identify population clusters

Finally, we fit a gravity migration model

Home cluster population	Destination cluster population	Distance between clusters (km)	# of observed trips	# of predicted trips
53	201	2.1	5	7
1572	585	15.8	72	68

The gravity model fits longitudinal linkage quite well

Helping the health system help community health workers (CHWs).

Reactive case detection follow-ups per index case

It's a power law!

Closer look with Buleyamalima and Sianyoolo as examples

At what point do the CHWs stop doing follow-ups because they have too many index cases?

At what point do the CHWs stop doing follow-ups because they have too many index cases?

At what point do the CHWs stop doing follow-ups because they have too many index cases?

The demands of reactive case detection depend strongly on population density.

Meaning of "perfect follow-up" differs by catchment due to the population distribution

Identify categories of RCD quality based on local population distribution

Identify categories of RCD quality based on local population distribution

Identify categories of RCD quality based on local population distribution

Flag CHWs when the lack of RCD is likely due to overload

Many thanks to

- MDA study participants
- Zambia NMEC: Busiku Hamainza
- **PATH-MACEPA:** John Miller, Kamm Schneider, Reine Rutagwera, Kafula Silumbe, Rick Steketee, Javan Chanda, Duncan Earle
- Tulane University: Thom Eisele
- USCF: Adam Bennett
- Past IDMers: Jaline Gerardin, Milen Nikolov

School of Public Health and Tropical Medicine

